开放存取
Issue
金博宝
体积22那2021
物品编号 27
页数) 14
D.OI https://doi.org/10.1051/meca/2021026
在线发布 2021年4月12日

© H. Li et al., published by EDP Sciences 2021

L.icence Creative Commons这是在Creative Commons归因许可证的条款下分发的开放式访问文章(https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1简介

由于减震,接触压力低,成本低,气动轮胎占据了超过100年的轮胎市场超过100年。然而,气动轮胎也有一些缺点:低磨损,大滚动阻力,空气泄漏[1]。

In order to make up for the shortcomings of the pneumatic tire, non-pneumatic has been widely researched in recent years [2]。W.u [3.]设计了一种新型的非充气轮胎,具有梯度抗四叶血管结构,并研究新轮胎具有良好的负荷承载能力。Evangelia [4.]设计了一种参数化有限元NPT模型,具有蜂窝结构,以研究其压力和最大垂直位移。Rugsaj [5.] developed a finite element NPT model with different spoke shapes to study the geometric effects on the NPT for the maximum stiffness and minimum local stress. Hryciow [6.[研究表明,辐条的曲率增加降低了径向刚度并通过数值测试增加了接触路径的长度。jin [7.] investigated the static and dynamic behaviors of NPT with different honeycomb spokes and found that the maximum stresses in spokes and tread of a NPT are much lower than that of traditional pneumatic tires, but its load carrying capacity is higher than the latter. Suvanjumrat [8.] proved that the optimum design of NPT to have required load carrying capacity and vertical stiffness can be easily achieved by mean of static Finite Element Method. Aboul-Yazid [9.[研究表明,辐条的形状对轮胎的行为有很大的影响,没有复合环。

此外,汽车空气动力学特性对汽车的动态,燃料经济性和机动稳定性有直接影响。作为汽车体的重要组成部分,车轮对整个车辆的空气动力学特性具有重要影响。由于车轮的效果,车身下方的流场进一步复杂化[1011], and the result also directly affects the aerodynamic characteristics of the vehicle.

The effects of the external flow field of the wheel have been studied at home and abroad, and the cylindrical wheel is usually used as the research object. Axon and Garry [1213]使用CFD流体仿真软件对简化独立轮胎进行数值模拟和风洞实验分析,探索了轮胎的空气动力学特性与地面接触,与风洞试验数据相比,数值模拟结果,并验证了准确性CFD数值模拟计算的影响。傅和胡[14] simulated the flow field around a single wheel with different spokes by CFD technique and proved that the changes in geometric parameters of wheels affected not only the local flow around wheels but also the characteristics of flow field of whole vehicle. Regert and Lajos [15]分析了圆柱轮和轮罩的流场,进行了仿真和实验研究,并进行了比较。利用Fluent软件,在Tan和Zhang等人的软件中,对车轮在静止和旋转条件下的外部流场进行了数值模拟[16] research, and comparative analysis was carried out. The simulation results showed that the rotating wheel affected the aerodynamic drag and lift of the whole vehicle. Researches show that aerodynamic resistance caused by wheels can account for 30% of the vehicle resistance [17]。因此,了解车轮附近的流场的特性和车辆外部流场的冲击在进一步提高整个车辆的空气动力学特性方面起着重要作用。然而,以前的研究通常仅研究了带有传统气动轮胎的轮子的外部流场。NPT的空气动力学特性的影响尚未广泛研究。

本文旨在制定框架,以通过数值模拟研究NPT结构对空气动力学特性的影响,并研究NPT对风洞试验对车辆阻力的影响,这可以为非充气轮胎设计提供理论依据。

2Model establishment and numerical calculation theory

2。1Establishment of tire finite element model

Based on the study of the structural parameters of non-pneumatic tire [25.18],利用CATIA软件建立了原三维轮胎模型(见Fig. 1)。轮胎的尺寸参数列于表1

缩略图 Fig. 1

原始三维模型。

表1

D.imension parameters of the original NPT model.

2.2原始模式的静态机械性能

ABAQUS软件用于模型网格和机械仿真。将3665n的垂直向下浓缩力施加到边缘的中心,使用隐式计算,监测轮胎径向位移的变化。模型网格和仿真结果显示在图2,并且轮胎径向压缩的变化显示在图3

Table 2将该模型的分析结果与Akshay Narasimhan研究的模型进行了比较[19]。From the comparison of the data in the table, it can be seen that the open non-pneumatic tire model has credibility and can support the subsequent research of the paper.

缩略图 Fig. 2

The original model mesh and simulation diagram under load.

缩略图 Fig. 3

Change of radial compression of open non-pneumatic tire.

Table 2

非充气轮胎模型静态特性比较。

2。3.Establishment of out flow field model

《不扩散核武器条约》通过ANSYS软件模型,网状。透明国际的re surface was divided into triangular hybrid mesh, and the complex parts were refined by mesh. The flow field area was divided into global tetrahedral unstructured mesh. In order to reduce computation load, half tire model was used for simulation analysis. The parameters of flow field calculation area are listed inTable 3。Flow field calculation domain is shown in图4。参考轴突的研究[1213], a rectangular grounding area of 20° at the contact of tire and ground was used, as shown in图5

数值模拟模拟轮胎在风速为22.22米/秒的道路上以80km / h的速度旋转轮胎的中心轴线,车轮旋转速度为74.07 rad / s。

The flow field boundary condition parameters were as follows: the wind speed in inlet was 22.22 m/s in the positive Y direction, the turbulent initial boundary condition adopted the turbulent kinetic energy k and the turbulent kinetic energy dissipation rate ε, the outlet was pressure-out, the tire was without sliding surface and rotated around the X axis, the ground and wall surface adopted no-sliding surface, the wind speed in outlet was 22.22 m/s in the positive Y direction, and Y-Z face was symmetrical.

Table 3

流场计算区域的尺寸参数。

缩略图 Fig. 4

Flow field calculation domain.

缩略图 Fig. 5

接地区。

2。4.理论of aerodynamic characteristics

一种erodynamic force refers to three forces along the coordinate axis and three moments around the coordinate axis [20]当车辆沿正X轴驱动时。空气动力学阻力FW.(N) 在X轴的正方向,气动升力FL.(n)在Z轴的正方向和水平侧向力FS.(N) 在Y轴的正方向。空气动力系数可以通过如下公式来描述。(1)(2)(3)

哪里is the dynamic pressure of the air flow;一种是车辆的正投影;CD.is the drag coefficient;CL.电梯系数是;CS.是侧力系数。

3不同结构NPT的气动性能

3.1原模型的数值模拟

3.1.1原始模型的空气动力学特征

The aerodynamic characteristics of the NPT model were simulated by FLUENT software. The realizableK.-ε.turbulence model was used for simulation calculation and monitoring the drag and lift of the tire. Scalable wall functions were used for convergence. The moving wall method was used to simulate the forward rolling of tire. The simple pressure-velocity coupling method was selected as the solution method, and the standard second-order upwind discrete method was used for high precision calculation. The convergence factors of K and ε were set to be10-4,并且恒定的迭代步骤设置为1500。

Table 4呈现静态和旋转条件下原始非充气轮胎模型的拖曳系数和提升系数的仿真结果,以及与其他纸张的研究结果的相对偏差。仿真结果本文的偏差接近Heo研究的模型的偏差[21] under the rotating condition of 14 m/s driving speed, while the simulation results are quite different from those of the pneumatic tire model studied by Axon et al. [12], which means that the spoke structure of the NPT model results in the increase of aerodynamic force. So a set of spokeless tire model was added in this paper for comparison. It can be seen fromTable 4在旋转条件下,摆动轮胎模型与气动轮胎模型之间的拖动系数差(Axon [12]) is only 1.32%, and the difference in lift coefficient is 0.21%, so the model of NPT researched in this paper is feasible. At a rotating speed of 22.22 m/s, the drag coefficient of NPT is 30.16% higher than that of spokeless tire, and the lift coefficient is 7.75% higher because the open spokes cause the aerodynamic coefficient to increase, especially drag coefficient.

Table 4

Comparison of simulation results of aerodynamic characteristics of the model.

3.2原模型结构对气动特性的影响

The main structural parameters of the NPT model include tire width and spoke parameters. Spoke parameters include the length, thickness, curvature, and spoke offset. The structural parameters of tire were researched and the effect of tire structure on aerodynamic characteristics was analyzed in the following sections.

3.2.1轮胎宽度的影响

分析了轮胎宽度对气动特性的影响。轮胎宽度分别减少了20% 毫米,40 嗯,60 而胎面宽度分别减小了10 毫米和20 嗯。采用上述五种模型进行仿真。

Table 5结果表明,随着轮胎宽度的减小,轮胎的阻力系数和升力系数逐渐减小;随着胎面宽度的减小,轮胎的阻力系数和升力系数也减小。踏面宽度的减小对阻力系数和升力系数影响很大。

Table 5

不同辐条长度的气动特性系数。

3.2.2辐条长度的效果

当辐条的长度变化时,辐条腔的体积变化,因此腔体中的辐条和空气质量之间的相互作用也变化。根据轮胎模型,辐条长度分别设定为52毫米,62毫米,72毫米,82毫米和92毫米。五个辐条长度模型的空气动力学特性的仿真结果显示图6

图6表明,辐条长度的减小导致轮胎拖曳系数和升力系数的降低。

缩略图 Fig. 6

一种erodynamic coefficients of different spoke lengths.

3.2.3轮辐厚度的影响

辐条厚度的变化为2mm,因此使用四个方案。Table 6显示了辐条厚度对气动特性的影响。

Table 6presents that with the increase of spoke thickness, the drag coefficient has a significant decrease trend, and the lift coefficient has a mild decrease trend.

Table 6

辐条厚度对空气动力学特征的影响。

3.2.4曲率和辐射辐射的影响

原始轮胎模型的辐条曲率为8,并且辐条的内部和外部偏移分别为0.6和0.15。辐条曲率的五种比较试验方案如下:曲率依次为4,6,8,10和12。辐条偏移率的四个方案如下:内/外偏移率为0/0,0.2 / 0.05,0.4 / 0.1和0.6 / 0.15。原始轮胎模型属于曲率方案3和偏移方案4。

The results of aerodynamic simulation of the spoke curvature and spoke offset rate are shown in图7

图7表明,辐条曲率和辐条偏转率的变化对空气动力学特征很少。

缩略图 Fig. 7

Effects of the spoke curvature and offset on aerodynamic characteristics. (a) Spoke curvature. (b) Spoke offset.

3.2.5 Effects of spoke arrangement

From the research point of view, the spoke length and thickness have obvious influence on the aerodynamic characteristics of open non-pneumatic tires.

图8shows a pair of spokes with Spoke 1 and Spoke 2. Divide the spokes 1 and 2 of each pair of spokes into 3 sections, 5 sections and 7 sections horizontally. The four section arrangement schemes are shown in图8一种。辐条段将影响辐条腔中的空气流量和每个辐条的力。当轮胎旋转时,它会减少辐条上的辐条上的腔体中的力。

Table 7shows the segment length and radial displacement of the four segmentation schemes. The segmentation of the spokes has a greater impact on the static characteristics of the tire, and the radial displacement of the tire is approximately doubled.

缩略图 Fig. 8

一种pair of spokes (a) and 4 schemes of spoke arrangement (b, c, d, e). (a) A pair of spokes. (b) Scheme 1. (c) Scheme 2. (d) Scheme 3. (e) Scheme 4.

Table 7

辐条布置方案和径向位移的大小。

4.一种erodynamic performances of NPT under driving condition

4.。1Effects of traffic speed on aerodynamic characteristics

根据阻力系数的公式(1)和lift coefficient (2), the square of traffic speed is inversely proportional to the aerodynamic coefficient. Assuming that the tire is under a certain force, the larger the speed is, the smaller the aerodynamic coefficient is. However, in fact, the aerodynamic force is affected by traffic speed as well: the increase of the speed results in the increase of the force of the wind on the tire. So it is difficult to determine the change relationship between the coefficients and variables from formulas. It is necessary to simulate the tire model and further study the effect of different speed on tire aerodynamic characteristics.

当交通速度为40 km / h,50 km / h,60 km / h,70 km / h和80 km / h时,模拟轮胎模型。模拟结果如下。

Table 8shows that, as the aerodynamic coefficients increase slightly with a positive correlation trend. Combined with the analysis of the aerodynamic formulas, as traffic speed increases, the aerodynamic force on the tire increases as well.

Table 8

交通速度对轮胎气动特性的影响。

4.。2Effects of tires on aerodynamic characteristics of the whole vehicle

The simulation and analysis of aerodynamic characteristics of independent tire models at different traffic speed have been carried out. With the addition of the body model, the flow field of the vehicle model is different from that of the independent tire model, and the body and the tire interact with each other.

MIRA model [22用于改善车身的尺寸,如图所示图9一种。具有4个NPT轮子的改进的车型如图所示图9

两种车辆仿真模型被建立ished: one was with solid tire, the other was with NPT. Under the condition that tire rotates, the aerodynamic force and aerodynamic coefficients of the two vehicle models were calculated, as well as the relevant aerodynamic coefficients of the tire. The turbulence profile of the two models on the surface is shown in图10.

前轮上的湍流强度大于后轮的湍流强度,如图所示图10.. 轮胎的转动对整车的流场影响很大。NPT轮胎的紊流强度大于实心轮胎的紊流强度,说明开口辐条加强了车轮的紊流运动。

Table 9表明,在旋转条件下,由于使用NPT,整个车辆模型的风力拖曳系数增加了0.03,并且阻力增加17.52 n;然而,提升系数减少0.014。对于轮胎,NPT的阻力系数将增加0.01,并且阻力增加5.72 n,而升力系数减少0.012。通常,使用NPT将整个车辆模型的风力拖拉约8%,同时将整个车辆模型的升力降低超过20%。因此,NPT轮子可用于汽车以使握持性能更好并使驱动更安全。

表10.shows the simulation results of aerodynamic characteristics of the whole vehicle model and each part: the tire drag coefficient accounts for 21.21% of that of the whole vehicle model, and the lift coefficient accounts for 26.57%. 63.1% of the drag and 65.79% of the lift are provided by front wheels, which have more drag and lift than the rear wheels. The simulation results basically coincide with the phenomena reflected in图910

缩略图 Fig. 9

MIRA model [20] and the improved vehicle model. (a) MIRA model. (b) The improved vehicle model.

缩略图 Fig. 10

Turbulence profile of the vehicle with solid tire and NPT.

Table 9

车辆气动特性的数值模拟结果。

表10.

零件空气动力学特性的数值模拟结果。

5风洞测试

5.1原始轮胎模型的结构优化

S.ince the curvature of the spokes has little effect on the aerodynamic force, the parameters were selected only for tire width, spoke length, and spoke thickness.

九个模型表11.were simulated under a pressure of 3665 N by Abaqus software. The radial displacement of the tire under load is shown in图11.。In order to ensure that the load-bearing capacity of the tire varies within a certain range, the variation range of the tire radial displacement should not exceed 5% (between 9.842 mm and 10.878 mm).

From图11.那the models that meet the tire static characteristics are D, G, H, and I, and the radial displacements are 10.410 mm, 10.212 mm, 10.659 mm, and 10.380 mm.

然后对所选模型进行了气动仿真,仿真结果如所示图12.。模型G,H的拖曳系数和升力系数小于原始轮胎模型。其中,模型H的阻力系数是值为0.757的最小值,提升系数为0.447。D的拖动系数大于原始轮胎模型,因此消除了。

最后,对G,H,I进行了气动噪声仿真,结果如所示表12.

Model H meets all the optimization requirements from图13.阻力系数和声压级最小,升力系数也比较合适。优化模型的三维模型如所示图14.

表13.表明,在22.22米/秒的驱动条件下,与原始模型相比,H模型H的径向位移增加了2.89%,其在预设范围为3%。此外,H模型对NPT的空气动力学特性具有更明显的影响,气动阻力系数降低了4.66%,轮胎升降系数减少了13.04%。在14米/秒的驾驶条件下,型号H的空气动力学阻力系数低于Heo模型的3.36%,升力系数降低了15.01%。通常,型号H的结构参数的优化可以实现非充气轮胎的减阻效果。

表11.

优化模型的结构参数。

缩略图 Fig. 11

优化模型的结构参数。

缩略图 Fig. 12

一种erodynamic characteristics of models.

表12.

S.ound pressure level of models.

缩略图 Fig. 13

Tire optimization plan.

缩略图 Fig. 14

3.D.model of optimized model H.

表13.

Comparison of aerodynamic characteristics and radial displacement of the models.

5.2实验设备及安装步骤

扬州大学风洞实验室由中央预算资助,并于2018年正式投入使用。风洞是直流吸气风洞,如图所示图15.。The wind speed range is 0‒40 m/s. The test section of the wind tunnel is 1.0-meter long, 0.4-meter wide, and 0.4-meter high. The effective cross-sectional area of the test section of the wind tunnel is 0.16 m2

Because the tire size is large, and the wind tunnel blockage ratio should be less than 15%, the tire model was reduced by a ratio of 1:4 and made by the light curing 3D printer, as shown in图16.。3D印刷非气动轮胎的三维刚度基本上是由王的模拟获得的50%[23]。因此,在结构设计期间这些材料的性能适度地降低了性能仿真,以保证预测3D印刷非充气轮胎的性能。

六分风隧道平衡用于监测轮胎六个方向的空气动力学力。在实验期间,数据采集装置通过传感器在六个组件风隧道平衡中收集轮胎的瞬时力量和时刻,并将它们传送到计算机上的ATI DAQ F / T软件。

S.ix-component wind tunnel balance was fixed on the floor of the wind tunnel test section, then the transmission line, tire base and NPT were installed in turn. The placement of the model in the wind tunnel is shown in图17.

实验1:实验专注于静态条件下轮胎气动特性的研究。风速设定为11米/秒,14米/秒,16米/秒,19米/秒和22米/秒。在不同的风速下测量轮胎的瞬时空气动力阻力和升力。流场稳定后,收集500组实验数据。

实验2:开放式辐条肯定会增加风测量状态的影响。实验是探讨风向角度在16m / s的风速下NPT的空气动力力的影响。风向角范围为0°至32°,每8°收集瞬态数据。

缩略图 Fig. 15

直流吸气风隧道。

缩略图 Fig. 16

3D打印轮胎模型。

缩略图 Fig. 17

Tire placement in the wind tunnel.

5.3实验与验证

实验的主要目的是监控轮胎的拖曳和升降。空气动力学力的平均值将通过样本数据获得。因为实验模型安装在固定底座上(如图所示)Fig. 18),应根据面积比例校正并除去碱基上的部位。

The comparison between the experimental and simulated aerodynamic characteristics of the original model is shown in表14.图19.

图19.a和b表示,随着风速的增加,轮胎阻力和升力也会增加。以及图19.c and d presents that, as wind speed increases, aerodynamic coefficient increases slightly, and the change trend of drag coefficient is consistent to that of lift coefficient.

一种s shown in the figures above, the results of wind tunnel test are larger than the simulation results. The mean difference value ()和相对偏差(δC)通过公式计算阻力系数的测试和仿真结果(4)(5)。The mean difference value ()和相对偏差(δL.)通过公式计算升力系数的测试和仿真结果(6)(7)(4)(5)(6)(7)哪里N是实验对照组的数目;Cs是实验拖曳系数;Cf是模拟阻力系数;LS.是实验升力系数;如果是模拟升力系数。

一种ccording to the experimental data, the mean difference value of drag coefficient is 0.0312, and the mean difference value of lift coefficient is 0.0284. In five sets of control experiments, when wind speed is 11 m/s, the relative deviation of drag coefficient is the largest, which is up to 8.36%. The minimum relative deviation of wind drag coefficient is 0.36% when wind speed is 19 m/s. Also, when wind speed is 16 m/s, the relative deviation of lift coefficient reaches the maximum value 8.60%. The minimum relative deviation of lift coefficient is 1.91% when wind speed is 11 m/s.

The experimental deviation of 11 m/s wind speed is the largest, which may be because low wind speed makes the force on the tire small, and there are differences between the printed experimental model and the simulation model. Also, there are differences between the boundary conditions in the experiment and the simulation, for example, the wind speed of the fan is not stable, resulting in the experimental data become larger. Overall, this wind tunnel experiment can verify the reliability of tire numerical simulation.

在16米/升风速的条件下,进行了原始轮胎模型的瞬时模拟。首先,轮胎模型在1000步中迭代,并且在流场达到稳定状态后,将拖动系数的数据以500步收集。然后,收集16米/秒风速的数据,并且可以通过公式计算轮胎的瞬时空气动力学系数(1)(2)

图20.a shows that the experimental instantaneous drag coefficient of tire is larger than that of simulation, but the overall trend is similar. The trend of lift coefficient in图20.b is similar to that of wind drag coefficient. The fluctuation of lift coefficient is relatively stable in the experiment and simulation. Two figures above can also verify the reliability of the simulation model and the accuracy of the simulation method.

The experiment of the influence of wind direction on tire aerodynamics was to explore the aerodynamic changes of NPT when the vehicle was turning. The wind tunnel experiment was conducted on two tire models with different wind direction angles. The experimental results are shown in图21.

缩略图 Fig. 18

Fixed base.

表14.

Experimental and simulated aerodynamic characteristics of model H.

缩略图 Fig. 19

实验性和模拟空气动力学特征。(a)拖动。(b)升降机。(c)拖动系数。(d)升力系数。

缩略图 图20

瞬时阻力和升力系数。(a)瞬时阻力系数。(b)瞬时提升系数。

缩略图 图21

不同风角下的空气动力。

6讨论和结论

减小轮胎宽度和轮辐长度,增加轮辐厚度可以有效地降低气动系数。辐条曲率和辐条偏移量对气动系数没有影响。

  • The increase of traffic speed can slightly increase aerodynamic coefficient. When traffic speed increases from 40 km/h to 80 km/h, the drag coefficient increases by 1.89%.

  • 与实心轮胎相比,NPT可以影响整车模型的湍流状态,使整车的阻力系数提高8.20%。NPT的阻力占整车的21.21%,65.79%的轮胎阻力由前轮提供。因此,需要进一步设计非充气轮胎以降低阻力。

  • The wind tunnel test of the original model verifies that the increase of wind speed makes the aerodynamic forces of tire increase.

利益冲突

这项研究没有得到外部资助。作者声明没有利益冲突。

一种cknowledgments

作者感谢Kun Liang教授和齐章教授为写作技巧的援助,并感谢扬州大学使用风洞设施。

References

  1. 绅士,JD沃尔特,气动轮胎(国家公路安全管理局,华盛顿特区,1985年)[谷歌学术]
  2. P.A.rangdale,k.r.Chandak,G.M.袋装,非充气轮胎,int。J. Eng。SCI。res。技术。2,61-68(2018)[谷歌学术]
  3. 吴天勇,李明祥,朱晓丽,等,梯度防四毛结构非充气轮胎的研究,力学。高级材料。结构(2020)[谷歌学术]
  4. G.P.Evangelia,P. Chatzistergos,X.X.王,蜂窝设计参数对非气动轮胎力学行为的影响。J. Appl。机械。12(2020)[谷歌学术]
  5. R.Rugsaj,C.Suvanjumrat,使用有限元法研究非充气轮胎辐条结构的几何效果。基于机械结构的结构和机械设计(2020)[谷歌学术]
  6. Z. Hryciow,J. Jackowski,M. Zmuda。非充气轮胎结构对其操作性质的影响。J. Autom。机械。eng。17,8168-8178(2020)[谷歌学术]
  7. X.C. Jin, C. Hou, X.L. Fan et al., Investigation on the static and dynamic behaviors of non-pneumatic tires with honeycomb spokes, Compos. Struct.187.,27-35(2018)[谷歌学术]
  8. C。S.uvanjumrat, R. Rugsaj, The dynamic finite element model of non-pneumatic tire under comfortable riding evaluation, Int. J. Geom.19那6.2–68 (2020)[谷歌学术]
  9. 一种。M. Aboul-Yazid, M.A. Emam, S. Shaaban et al., Effect of spokes structures of characteristics performance of non-pneumatic tires, Int. J. Autom. Mech. Eng.11那2212–2223 (2015)[谷歌学术]
  10. H.B.黄,X.D.yu,q.g.刘等人,车轮周围气流场的数值模拟[J],J.Syst。simulat。31,641-647(2019)[谷歌学术]
  11. B. Peter, S. Simone, B. Alexander, Effects of wheel configuration on the flow field and the drag coefficient of a passenger vehicle, Int. J. Autom. Technol.20那7.6.3.‒777 (2019)[谷歌学术]
  12. L。阿克森,K。加里,J。豪厄尔,一个评价CFD模型周围的流动固定和旋转孤立的车轮,美国汽车工程师学会运输。107., 205–215 (1998)[谷歌学术]
  13. L.。一种xon, K. Garry, J. Howell, The influence of ground condition on the flow around a wheel located within a wheelhouse cavity, SAE Technical Paper 01–0806 (1999)[谷歌学术]
  14. l.m. fu,x.j.匈奴,S.C. Zhang,汽车轮毂周围流场的数值模拟研究,具有不同的几何参数,自由。eng。28那4.5.1–454 (2006)[谷歌学术]
  15. T. Regert, T. Lajos, Description of flow field in the wheelhouses of cars, Int. J. Heat Fluid Flow28(2007)[谷歌学术]
  16. y.w.棕褐色,Z.H.张,Q.S.刘,汽车外流场与旋转车轮基于流畅,J.四川大学的影响分析。SCI。eng。(自然科学版)28那17–21 (2015)[谷歌学术]
  17. 刘晓丽,颜晓霞,黄国荣,车底流场结构对汽车气动性能影响的数值研究,J。新工业。5.,35-41(2015)[谷歌学术]
  18. y.j. deng,Y.Q.Zhao,F. Lin等,用有限元法模拟稳态轧制非气动机械弹性轮模拟。模型。实践。理论8.5., 60–79 (2018)[谷歌学术]
  19. A.Narasimhan,一种非充气轮胎材料性能分析的计算方法及其对障碍物冲击辗轧的静载荷挠度、振动和能量损失的影响,克莱姆森大学,2010[谷歌学术]
  20. S.。Bezgam, Design and analysis of alternating spoke pair concepts for a NPT with reduced vibration at high speed rolling. Clemson University, 2009[谷歌学术]
  21. H. Heo, J. Ju, D.M. Kim et al., A study on the aerodynamic drag of a NPT [A]. ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference6.那5.17–521 (2012)[谷歌学术]
  22. Y.C. Zhang, J.T. Zhang, K.G. Wu, Aerodynamic characteristics of mira fastback model in experiment and CFD, Int. J. Autom. Technol.20,723-737(2019年)[谷歌学术]
  23. J. Wang,B. Yang,X. Lin等,FDM方法,聚合物的非气动轮胎3D印刷TPU材料研究12那24.9.2(2020)[谷歌学术]

引用本文: H. Li, Y. Xu, C. Si, Y. Yang, A research on aerodynamic characteristics of non-pneumatic tire, Mechanics & Industry22,27(2021)

所有表格

表1

D.imension parameters of the original NPT model.

Table 2

非充气轮胎模型静态特性比较。

Table 3

流场计算区域的尺寸参数。

Table 4

Comparison of simulation results of aerodynamic characteristics of the model.

Table 5

不同辐条长度的气动特性系数。

Table 6

辐条厚度对空气动力学特征的影响。

Table 7

辐条布置方案和径向位移的大小。

Table 8

交通速度对轮胎气动特性的影响。

Table 9

车辆气动特性的数值模拟结果。

表10.

零件空气动力学特性的数值模拟结果。

表11.

优化模型的结构参数。

表12.

S.ound pressure level of models.

表13.

Comparison of aerodynamic characteristics and radial displacement of the models.

表14.

Experimental and simulated aerodynamic characteristics of model H.

所有数字

缩略图 Fig. 1

原始三维模型。

In the text
缩略图 Fig. 2

The original model mesh and simulation diagram under load.

In the text
缩略图 Fig. 3

Change of radial compression of open non-pneumatic tire.

In the text
缩略图 Fig. 4

Flow field calculation domain.

In the text
缩略图 Fig. 5

接地区。

In the text
缩略图 Fig. 6

一种erodynamic coefficients of different spoke lengths.

In the text
缩略图 Fig. 7

Effects of the spoke curvature and offset on aerodynamic characteristics. (a) Spoke curvature. (b) Spoke offset.

In the text
缩略图 Fig. 8

一种pair of spokes (a) and 4 schemes of spoke arrangement (b, c, d, e). (a) A pair of spokes. (b) Scheme 1. (c) Scheme 2. (d) Scheme 3. (e) Scheme 4.

In the text
缩略图 Fig. 9

MIRA model [20] and the improved vehicle model. (a) MIRA model. (b) The improved vehicle model.

In the text
缩略图 Fig. 10

Turbulence profile of the vehicle with solid tire and NPT.

In the text
缩略图 Fig. 11

优化模型的结构参数。

In the text
缩略图 Fig. 12

一种erodynamic characteristics of models.

In the text
缩略图 Fig. 13

Tire optimization plan.

In the text
缩略图 Fig. 14

3.D.model of optimized model H.

In the text
缩略图 Fig. 15

直流吸气风隧道。

In the text
缩略图 Fig. 16

3D打印轮胎模型。

In the text
缩略图 Fig. 17

Tire placement in the wind tunnel.

In the text
缩略图 Fig. 18

Fixed base.

In the text
缩略图 Fig. 19

实验性和模拟空气动力学特征。(a)拖动。(b)升降机。(c)拖动系数。(d)升力系数。

In the text
缩略图 图20

瞬时阻力和升力系数。(a)瞬时阻力系数。(b)瞬时提升系数。

In the text
缩略图 图21

不同风角下的空气动力。

In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

D.ata correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

初始下载度量可能需要一段时间。